Customer clustering based on a latent class model representing preferences for item seasonality

Masato Ninohira, Haruka Yamashita, Masayuki Goto

研究成果: Article査読

抄録

It has recently become easier for retail stores to obtain mass customer purchase history data. Analyzing these data, it is possible to understand the preferences of each customer and to use the results for marketing strategies. At the same time, it is important to take into account item seasonality in supermarkets planing marketing policies. It is, therefore, necessary to understand whether each customer purchases items based on seasonality throughout the year. In this study, we propose a new latent class model for analyzing customers’ purchasing behavior focusing on the seasonality of items, and demonstrate an analysis using our model. Moreover, we show that analysis of customers’ purchase behavior using both conventional latent class models and our latent class model provides more useful results than using only one model.

本文言語English
ページ(範囲)195-206
ページ数12
ジャーナルJournal of Japan Industrial Management Association
69
4 E
DOI
出版ステータスPublished - 2019

ASJC Scopus subject areas

  • 戦略と経営
  • 経営科学およびオペレーションズ リサーチ
  • 産業および生産工学
  • 応用数学

フィンガープリント

「Customer clustering based on a latent class model representing preferences for item seasonality」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル