Decay and scattering of small solutions of pure power NLS in ℝ with p>3 and with a potential

Scipio Cuccagna, Nicola Visciglia, Vladimir Georgiev

研究成果: Article査読

22 被引用数 (Scopus)

抄録

We prove decay and scattering of solutions of the nonlinear Schrödinger equation (NLS) in ℝ with pure power nonlinearity with exponent 3<p<5 when the initial datum is small in Σ (bounded energy and variance) in the presence of a linear inhomogeneity represented by a linear potential that is a real-valued Schwarz function. We assume absence of discrete modes. The proof is analogous to the one for the translation-invariant equation. In particular, we find appropriate operators commuting with the linearization.

本文言語English
ページ(範囲)957-981
ページ数25
ジャーナルCommunications on Pure and Applied Mathematics
67
6
DOI
出版ステータスPublished - 2014 6月
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Decay and scattering of small solutions of pure power NLS in ℝ with p>3 and with a potential」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル