Decay property of regularity-loss type and nonlinear effects for dissipative timoshenko system

Kentaro Ide, Shuichi Kawashima

研究成果: Article

58 引用 (Scopus)

抜粋

We consider the initial value problem for a nonlinear version of the dissipative Timoshenko system. This syetem verifies the decay property of regularity-loss type. To overcome this difficulty caused by the regularity-loss property, we employ the time weighed L2 energy method which is combined with the optimal L2 decay estimates for lower order derivatives of solutions. Then we show the global existence and asymptotic decay of solutions under smallness and enough regularity conditions on the initial data. Moreover, we show that the solution approaches the linear diffusion wave expressed in terms of the superposition of the heat kernels as time tends to infinity.

元の言語English
ページ(範囲)1001-1025
ページ数25
ジャーナルMathematical Models and Methods in Applied Sciences
18
発行部数7
DOI
出版物ステータスPublished - 2008 7 1
外部発表Yes

ASJC Scopus subject areas

  • Modelling and Simulation
  • Applied Mathematics

フィンガープリント Decay property of regularity-loss type and nonlinear effects for dissipative timoshenko system' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用