Decision analysis of fuzzy partition tree applying AIC and fuzzy decision

Kimiaki Shinkai, Shuya Kanagawa, Takenobu Takizawa, Hajime Yamashita

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

We often use fuzzy graph to analyze inexact information such as sociogram structure ([1] and [2]). Concerning the hierarchical cluster analysis of a fuzzy graph ([3], [4] and [5] ), the number of clusters may have to be decided in the actual cluster analysis. In other word, we woud like to decide the optimal level with a partition tree. Concerning this problem, while AIC method in statistical analysis has been designed by us ([6] and [10]), we will now propose a fuzzy decision method which is based on the evaluation function paying attention to the size and number of clusters at each level.

本文言語English
ホスト出版物のタイトルKnowledge-Based Intelligent Information and Engineering Systems - 12th International Conference, KES 2008, Proceedings
出版社Springer Verlag
ページ572-579
ページ数8
PART 3
ISBN(印刷版)3540855661, 9783540855668
DOI
出版ステータスPublished - 2008
イベント12th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2008 - Zagreb, Croatia
継続期間: 2008 9 32008 9 5

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
番号PART 3
5179 LNAI
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference12th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2008
国/地域Croatia
CityZagreb
Period08/9/308/9/5

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Decision analysis of fuzzy partition tree applying AIC and fuzzy decision」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル