Deep Learning Based CoMP Transmission Method Using Vehicle Position Information for Taxi Radio Systems

Kazuki Kojima, Yukiko Shimbo, Hirofumi Suganuma, Fumiaki Maehara

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

This paper proposes a coordinated multi-point (CoMP) transmission method based on deep learning for taxi radio systems to prevent inter-cell interference (ICI). In CoMP, it is essential to select whether to use simultaneous transmission or time division multiplexing (TDM) considering the effect of the ICI. The feature of the proposed method is to determine such a transmission mode by using vehicle position information as taxi radio systems have such position information. Moreover, the proposed method makes it possible to avoid the online system capacity calculation also required for CoMP thanks to the use of deep learning. The effectiveness of the proposed method is demonstrated in comparison with a traditional online calculation method under the practical scenario based on the taxi radio system in Japan.

本文言語English
ホスト出版物のタイトル2020 International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020
出版社Institute of Electrical and Electronics Engineers Inc.
ページ253-256
ページ数4
ISBN(電子版)9781728149851
DOI
出版ステータスPublished - 2020 2月
イベント2nd International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020 - Fukuoka, Japan
継続期間: 2020 2月 192020 2月 21

出版物シリーズ

名前2020 International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020

Conference

Conference2nd International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020
国/地域Japan
CityFukuoka
Period20/2/1920/2/21

ASJC Scopus subject areas

  • 情報システムおよび情報管理
  • 人工知能
  • コンピュータ ネットワークおよび通信
  • コンピュータ ビジョンおよびパターン認識
  • 情報システム
  • 信号処理

フィンガープリント

「Deep Learning Based CoMP Transmission Method Using Vehicle Position Information for Taxi Radio Systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル