Deformations of symplectic structures by moment maps

Tomoya Nakamura*

*この研究の対応する著者

    研究成果: Article査読

    抄録

    We study deformations of symplectic structures on a smooth manifold M via the quasi-Poisson theory. We can deform a given symplectic structure ω with a Hamiltonian G-action to a new symplectic structure ωt parametrized by some element t in Λ2g. We can obtain concrete examples for the deformations of symplectic structures on the complex projective space and the complex Grassmannian. Moreover applying the deformation method to any symplectic toric manifold, we show that manifolds before and after deformations are isomorphic as a symplectic toric manifold.

    本文言語English
    ページ(範囲)63-84
    ページ数22
    ジャーナルJournal of Geometry and Symmetry in Physics
    47
    DOI
    出版ステータスPublished - 2018 1月 1

    ASJC Scopus subject areas

    • 数理物理学
    • 幾何学とトポロジー

    フィンガープリント

    「Deformations of symplectic structures by moment maps」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル