Degenerate elliptic operators, hardy spaces and diffusions on strongly pseudoconvex domains

Hitoshi Arai*

*この研究の対応する著者

研究成果: Article査読

8 被引用数 (Scopus)

抄録

We will study some linear topological properties of Hardy space H1 associated to solutions of the Laplace-Beltrami operator or more general elliptic operators on a smoothly bounded strongly pseudoconvex domain endowed with the Bergman metric. In particular, we characterize such Hardy spaces in terms of diffusions and non-isotropic atoms. Consequently we see that the dual space of H1 is equivalent to the non-isotropic BMO space and that H1 is isomorphic to the classical Hardy space on the open unit disc in the plane. As a corollary we also prove that the Hardy space H1 of holomorphic functions on a strongly pseudoconvex domain is isomorphic to the classical one on the open unit disc, as conjectured by P. Wojtaszczyk.

本文言語English
ページ(範囲)469-498
ページ数30
ジャーナルTohoku Mathematical Journal
46
4
DOI
出版ステータスPublished - 1994 12月
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Degenerate elliptic operators, hardy spaces and diffusions on strongly pseudoconvex domains」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル