Degree formula for Grassmann bundles

Hajime Kaji*, Tomohide Terasoma

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Let X be a non-singular quasi-projective variety over a field, and let E be a vector bundle over X. Let GX(d,E) be the Grassmann bundle of E over X parametrizing corank d subbundles of E with projection π:GX(d,E)→X, let Q←π*E be the universal quotient bundle of rank d, and denote by θ the Plücker class of GX(d,E), that is, the first Chern class of the Plücker line bundle, det<>Q. In this short note, a closed formula for the push-forward of powers of the Plücker class θ is given in terms of the Schur polynomials in Segre classes of E, which yields a degree formula for GX(d,E) with respect to θ when X is projective and dE is very ample.

本文言語English
ページ(範囲)5426-5428
ページ数3
ジャーナルJournal of Pure and Applied Algebra
219
12
DOI
出版ステータスPublished - 2015 12月 1

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Degree formula for Grassmann bundles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル