Dependence structure of bivariate order statistics with applications to bayramoglu's distributions

J. S. Huang, Xiaoling Dou, Satoshi Kuriki, G. D. Lin

研究成果: Article

13 引用 (Scopus)

抜粋

We study the dependence structure of bivariate order statistics from bivariate distributions, and prove that if the underlying bivariate distribution H is positive quadrant dependent (PQD) then so is each pair of bivariate order statistics. As an application, we show that if H is PQD, the bivariate distribution K(n)+, recently proposed by Bairamov and Bayramoglu (2012) [1], is greater than or equal to Baker's (2008) [2] distribution H(n)+, and hence K(n)' attains a correlation higher than that of H(n)+. We give two explicit forms of the intractable K(n)+ and prove that for all n ≥ 2, K(n)+ is PQD regardless of H. We also show that if H is PQD, K(n)+ converges weakly to the Fréchet-Hoeffding upper bound as n tends to infinity.

元の言語English
ページ(範囲)201-208
ページ数8
ジャーナルJournal of Multivariate Analysis
114
発行部数1
DOI
出版物ステータスPublished - 2013 1 1
外部発表Yes

ASJC Scopus subject areas

  • Statistics and Probability
  • Numerical Analysis
  • Statistics, Probability and Uncertainty

フィンガープリント Dependence structure of bivariate order statistics with applications to bayramoglu's distributions' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用