Design and construction of the BESIII detector

M. Ablikim, Z. H. An, J. Z. Bai, Niklaus Berger, J. M. Bian, X. Cai, G. F. Cao, X. X. Cao, J. F. Chang, C. Chen, G. Chen, H. C. Chen, H. X. Chen, J. Chen, J. C. Chen, L. P. Chen, P. Chen, X. H. Chen, Y. B. Chen, M. L. ChenY. P. Chu, X. Z. Cui, H. L. Dai, Z. Y. Deng, M. Y. Dong, S. X. Du, Z. Z. Du, J. Fang, C. D. Fu, C. S. Gao, M. Y. Gong, W. X. Gong, S. D. Gu, B. J. Guan, J. Guan, Y. N. Guo, J. F. Han, K. L. He, M. He, X. He, Y. K. Heng, Z. L. Hou, H. M. Hu, T. Hu, B. Huang, J. Huang, S. K. Huang, Y. P. Huang, Q. Ji, X. B. Ji, X. L. Ji, L. K. Jia, L. L. Jiang, X. S. Jiang, D. P. Jin, S. Jin, Y. Jin, Y. F. Lai, G. K. Lei, F. Li, G. Li, H. B. Li, H. S. Li, J. Li, J. Li, J. C. Li, Q. J. Li, L. Li, L. Li, R. B. Li, R. Y. Li, W. D. Li, W. G. Li, X. N. Li, X. P. Li, X. R. Li, Y. R. Li, W. Li, D. X. Lin, B. J. Liu, C. X. Liu, F. Liu, G. M. Liu, H. Liu, H. M. Liu, H. W. Liu, J. B. Liu, L. F. Liu, Q. Liu, Q. G. Liu, S. D. Liu, W. J. Liu, X. Liu, X. Z. Liu, Y. Liu, Y. J. Liu, Z. A. Liu, Z. Q. Liu, Z. X. Liu, J. G. Lu, T. Lu, Y. P. Lu, X. L. Luo, H. L. Ma, Q. M. Ma, X. Ma, X. Y. Ma, Z. P. Mao, J. Min, X. H. Mo, J. Nie, Z. D. Nie, R. G. Ping, S. Qian, Q. Qiao, G. Qin, Z. H. Qin, J. F. Qiu, R. G. Liu, Z. Y. Ren, G. Rong, L. Shang, D. L. Shen, X. Y. Shen, H. Y. Sheng, Y. F. Shi, L. W. Song, W. Y. Song, D. H. Sun, G. X. Sun, H. S. Sun, L. J. Sun, S. S. Sun, X. D. Sun, Y. Z. Sun, Z. J. Sun, J. P. Tan, S. Q. Tang, X. Tang, N. Tao, H. L. Tian, Y. R. Tian, X. Wan, D. Y. Wang, J. K. Wang, J. Z. Wang, K. Wang, K. X. Wang, L. Wang, L. Wang, L. J. Wang, L. S. Wang, M. Wang, N. Wang, P. Wang, P. L. Wang, Q. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. G. Wang, Z. Y. Wang, C. L. Wei, S. J. Wei, S. P. Wen, J. J. Wu, L. H. Wu, N. Wu, Y. H. Wu, Y. M. Wu, Z. Wu, M. H. Xu, X. M. Xia, H. S. Xiang, G. Xie, X. X. Xie, Y. G. Xie, G. F. Xu, H. Xu, Q. J. Xu, J. D. Xue, L. Xue, L. Yan, G. A. Yang, H. Yang, H. X. Yang, S. M. Yang, M. Ye, B. X. Yu, C. Yuan, C. Z. Yuan, Y. Yuan, S. L. Zang, B. X. Zhang, B. Y. Zhang, C. C. Zhang, C. C. Zhang, D. H. Zhang, H. Y. Zhang, J. Zhang, J. W. Zhang, J. Y. Zhang, L. S. Zhang, M. Zhang, Q. X. Zhang, W. Zhang, X. M. Zhang, Y. Zhang, Y. H. Zhang, Y. Y. Zhang, Z. X. Zhang, S. H. Zhang, D. X. Zhao, D. X. Zhao, H. S. Zhao, J. B. Zhao, J. W. Zhao, J. Z. Zhao, L. Zhao, P. P. Zhao, Y. B. Zhao, Y. D. Zhao, B. Zheng, J. P. Zheng, L. S. Zheng, Z. P. Zheng, B. Q. Zhou, G. M. Zhou, J. Zhou, L. Zhou, Z. L. Zhou, H. T. Zhu, K. Zhu, K. J. Zhu, Q. M. Zhu, X. W. Zhu, Y. S. Zhu, Z. A. Zhu, B. A. Zhuang, J. H. Zou, X. Zou, J. X. Zuo, L. L. Wang, M. H. Ye, Y. H. Zheng, C. F. Qiao, X. R. Lu, H. B. Liu, J. F. Hu, Y. T. Gu, X. D. Ruan, G. M. Huang, Y. Zeng, Y. H. Yan, G. Chelkov, I. Boyko, D. Dedovich, I. Denysenko, S. Grishin, A. Zhemchugov, Zhenjun Xiao, Jialun Ping, Libo Guo Chenglin Luo, Shenjian Chen, Ming Qi, Xiaowei Hu, Lei Zhang, Xueqian Li, Chunxu Yu, Yubin Liu, Ye Xu, Minggang Zhao, Aiqiang Guo, Yuping Guo, Zhenya He, Y. J. Mao, Z. Y. You, Y. T. Liang, X. Y. Zhang, X. T. Huang, J. B. Jiao, X. L. Li, M. Y. Duan, F. H. Liu, Q. W. Lu, F. P. Ning, X. D. Wang, Yongfei Liang, Changjian Tang, Yiyun Zhang, Y. N. Gao, H. Gong, B. B. Shao, Y. R. Tian, S. M. Yang, F. A. Harris, J. W. Kennedy, Q. Liu, X. Nguyen, S. L. Olsen, M. Rosen, C. P. Shen, G. S. Varner, X. Yu, Y. Zhou, H. Liang, Y. Chen, J. Xue, Q. Liu, B. Liu, Z. Cheng, L. Zhou, H. Yang, H. F. Chen, Cheng Li, M. Shao, Y. J. Sun, J. Yan, Z. B. Tang, X. Li, L. Zhao, L. Jiang, Z. P. Zhang, J. Wu, Z. Z. Xu, Q. Shan, Z. Xue, X. L. Wang, Q. An, S. B. Liu, J. H. Guo, L. Zhao, C. Q. Feng, X. Z. Liu, H. Li, W. Zheng, H. Yan, Z. Cao, X. H. Liu, Sachio Komamiya, Tomoyuki Sanuki, Taiki Yamamura, Tianchi Zhao, Mingxing Luo

研究成果: Article査読

676 被引用数 (Scopus)

抄録

This paper will discuss the design and construction of BESIII, which is designed to study physics in the τ-charm energy region utilizing the new high luminosity BEPCII double ring e+e- collider. The expected performance will be given based on Monte Carlo simulations and results of cosmic ray and beam tests. In BESIII, tracking and momentum measurements for charged particles are made by a cylindrical multilayer drift chamber in a 1 T superconducting solenoid. Charged particles are identified with a time-of-flight system based on plastic scintillators in conjunction with dE/dx (energy loss per unit pathlength) measurements in the drift chamber. Energies of electromagnetic showers are measured by a CsI(Tl) crystal calorimeter located inside the solenoid magnet. Muons are identified by arrays of resistive plate chambers in a steel magnetic yoke for the flux return. The level 1 trigger system, data acquisition system and the detector control system based on networked computers will also be described.

本文言語English
ページ(範囲)345-399
ページ数55
ジャーナルNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
614
3
DOI
出版ステータスPublished - 2010 3 11
外部発表はい

ASJC Scopus subject areas

  • 核物理学および高エネルギー物理学
  • 器械工学

フィンガープリント

「Design and construction of the BESIII detector」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル