TY - JOUR
T1 - Design Study of Small Modular Reactor Class Super Fast Reactor Core for In-Vessel Retention
AU - Sasaki, Ryotaro
AU - Yamaji, Akifumi
AU - Uchimura, Kyota
N1 - Funding Information:
This work was partly supported by JSPS KAKENHI Grant Number 20H02669. A part of this study is the result of “Understanding Mechanisms of Severe Accidents and Improving Safety of Nuclear Reactors by Computer Science” of Waseda Research Institute for Science and Engineering and the authors acknowledge support of the Institute for Advanced Theoretical and Experimental Physics, Waseda University.
Publisher Copyright:
© 2023 by ASME.
PY - 2023/4
Y1 - 2023/4
N2 - The small modular reactor (SMR) class core design concept of once-through supercritical light water-cooled reactor (SCWR) with fast neutron spectrum (super fast reactor (FR)) is being developed at Waseda University. For the 300MWel class design, complete core meltdown may need to be considered in case of a severe accident. This study proposes the new in-vessel retention (IVR) concept of the SMR class super FR (super FRIVR), which can avoid recriticality even if the whole core relocates to the lower plenum of the reactor pressure vessel (RPV). The core characteristics with a given set of design specifications and criteria are evaluated based on fully coupled neutronics and thermalhydraulics core burnup calculations. The debris criticality is evaluated based on Monte Carlo based method to consider the RPV lower plenum and debris configurations. The relationships between the 300MWel class core design with the inner vessel diameter of 2.32m and the IVR design are revealed. By reducing the operation cycle length from 720 days to 360 days and increasing the core inlet temperature from 280 °C to 370 °C, the required IVR submergence level could be reduced from 2.18m to 1.38 m, assuming that the debris bed (melt pool) is homogeneous. However, when fully stratified debris configurations are assumed, the required disperser height and the corresponding IVR submergence level may increase to about 2.70 m.
AB - The small modular reactor (SMR) class core design concept of once-through supercritical light water-cooled reactor (SCWR) with fast neutron spectrum (super fast reactor (FR)) is being developed at Waseda University. For the 300MWel class design, complete core meltdown may need to be considered in case of a severe accident. This study proposes the new in-vessel retention (IVR) concept of the SMR class super FR (super FRIVR), which can avoid recriticality even if the whole core relocates to the lower plenum of the reactor pressure vessel (RPV). The core characteristics with a given set of design specifications and criteria are evaluated based on fully coupled neutronics and thermalhydraulics core burnup calculations. The debris criticality is evaluated based on Monte Carlo based method to consider the RPV lower plenum and debris configurations. The relationships between the 300MWel class core design with the inner vessel diameter of 2.32m and the IVR design are revealed. By reducing the operation cycle length from 720 days to 360 days and increasing the core inlet temperature from 280 °C to 370 °C, the required IVR submergence level could be reduced from 2.18m to 1.38 m, assuming that the debris bed (melt pool) is homogeneous. However, when fully stratified debris configurations are assumed, the required disperser height and the corresponding IVR submergence level may increase to about 2.70 m.
UR - http://www.scopus.com/inward/record.url?scp=85144616143&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85144616143&partnerID=8YFLogxK
U2 - 10.1115/1.4053827
DO - 10.1115/1.4053827
M3 - Article
AN - SCOPUS:85144616143
SN - 2332-8983
VL - 9
JO - Journal of Nuclear Engineering and Radiation Science
JF - Journal of Nuclear Engineering and Radiation Science
IS - 2
M1 - 021501
ER -