Detection of Anomaly State Caused by Unexpected Accident using Data of Smart Card for Public Transportation

Sakura Yamaki, Shou De Lin, Wataru Kameyama

研究成果: Conference contribution

抄録

The railway is an indispensable means of transportation for people living in urban areas in Japan. However, unexpected accidents or disasters disturb the train operation. People usually check the operation status of trains on the official websites or Twitter of each railway company. However, it is still unclear whether such information is provided in realtime, when it is updated and which station is severely affected. Therefore, we tackle a real-world application of transportation big data using 8 months' data collected by smart cards for public transportation in Keikyu Line operating in Tokyo and Kanagawa Prefectures. We propose a method to detect the anomaly state by using the number of train users every 10 minutes in major 9 stations in Keikyu Line. In the method, outlier detections by interquartile range, interval estimation and Hotelling's theory are utilized to detect anomaly points. As the results, our proposal detects anomaly state better than the official announcement by Twitter on some points in terms of realtimeness, update frequency and geographic detail.

本文言語English
ホスト出版物のタイトルProceedings - 2019 IEEE International Conference on Big Data, Big Data 2019
編集者Chaitanya Baru, Jun Huan, Latifur Khan, Xiaohua Tony Hu, Ronay Ak, Yuanyuan Tian, Roger Barga, Carlo Zaniolo, Kisung Lee, Yanfang Fanny Ye
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1693-1698
ページ数6
ISBN(電子版)9781728108582
DOI
出版ステータスPublished - 2019 12
イベント2019 IEEE International Conference on Big Data, Big Data 2019 - Los Angeles, United States
継続期間: 2019 12 92019 12 12

出版物シリーズ

名前Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019

Conference

Conference2019 IEEE International Conference on Big Data, Big Data 2019
国/地域United States
CityLos Angeles
Period19/12/919/12/12

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • 情報システム
  • 情報システムおよび情報管理

フィンガープリント

「Detection of Anomaly State Caused by Unexpected Accident using Data of Smart Card for Public Transportation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル