Determinant and Pfaffian solutions of the strong coupling limit of integrable discrete NLS systems

Ken Ichi Maruno, Barbara Prinari

研究成果: Article査読

2 被引用数 (Scopus)

抄録

The strong coupling limits of the integrable semi-discrete and fully discrete nonlinear Schrödinger systems are studied by using the Hirota bilinear method. The determinant solutions (in both infinite and finite lattice cases) for the strong coupling limits of semi-discrete and fully discrete nonlinear Schrödinger systems are obtained using a determinant technique. The vector generalizations of the strong coupling limits of semi-discrete and fully discrete nonlinear Schrödinger systems are also presented. The Pfaffian solutions for vector systems are obtained using the Pfaffian technique.

本文言語English
論文番号055011
ジャーナルInverse Problems
24
5
DOI
出版ステータスPublished - 2008 10 1
外部発表はい

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Signal Processing
  • Mathematical Physics
  • Computer Science Applications
  • Applied Mathematics

フィンガープリント 「Determinant and Pfaffian solutions of the strong coupling limit of integrable discrete NLS systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル