Determined BSS Based on Time-Frequency Masking and Its Application to Harmonic Vector Analysis

Kohei Yatabe*, Daichi Kitamura

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

This paper proposes harmonic vector analysis (HVA) based on a general algorithmic framework of audio blind source separation (BSS) that is also presented in this paper. BSS for a convolutive audio mixture is usually performed by multichannel linear filtering when the numbers of microphones and sources are equal (determined situation). This paper addresses such determined BSS based on batch processing. To estimate the demixing filters, effective modeling of the source signals is important. One successful example is independent vector analysis (IVA) that models the signals via co-occurrence among the frequency components in each source. To give more freedom to the source modeling, a general framework of determined BSS is presented in this paper. It is based on the plug-and-play scheme using a primal-dual splitting algorithm and enables us to model the source signals implicitly through a time-frequency mask. By using the proposed framework, determined BSS algorithms can be developed by designing masks that enhance the source signals. As an example of its application, we propose HVA by defining a time-frequency mask that enhances the harmonic structure of audio signals via sparsity of cepstrum. The experiments showed that HVA outperforms IVA and independent low-rank matrix analysis (ILRMA) for both speech and music signals. A MATLAB code is provided along with the paper for a reference.

本文言語English
論文番号9406343
ページ(範囲)1609-1625
ページ数17
ジャーナルIEEE/ACM Transactions on Audio Speech and Language Processing
29
DOI
出版ステータスPublished - 2021

ASJC Scopus subject areas

  • コンピュータ サイエンス(その他)
  • 音響学および超音波学
  • 計算数学
  • 電子工学および電気工学

フィンガープリント

「Determined BSS Based on Time-Frequency Masking and Its Application to Harmonic Vector Analysis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル