Development of a measurement system for nitrate radical and dinitrogen pentoxide using a thermal conversion/laser-induced fluorescence technique

Jun Matsumoto, Naohiro Kosugi, Hidekazu Imai, Yoshizumi Kajii

研究成果: Article

32 引用 (Scopus)

抄録

An instrument for measuring atmospheric nitrate radical (N O3) and dinitrogen pentoxide (N2 O5) has been developed by a thermal conversion/laser-induced fluorescence (TC/LIF) technique. N2 O5 is thermally decomposed and converted to N O3, which is measured by laser-induced fluorescence. In situ, fast-response, sensitive measurement of N O3 N2 O5 is expected by use of LIF. In detecting N O3, dual-wavelength excitation at 622.96 and 618.81 nm was adopted to remove potential interference and to guarantee high selectivity. A high-power dye laser system was used as the source of excitation light. To measure ambient air directly, the N O3 detection cell was placed on the rooftop. The laser beam was guided by an optical fiber into the excitation cell. Transmittance of the laser beam was 80% for a 10 m long fiber. To calibrate the instrument, the series of thermal decomposition of N2 O5 and the gas phase titration of N O3 by NO were conducted. N O3 reduction by adding NO was also applied to determine accurately the zero points of the detector. After optimization of conditions such as gate timing in photon counting and the settings of the N2 O5 converter, the present detection limits of N O3 and N2 O5 were determined to be 4 and 6 pptv, respectively, for the integration time of 10 min (signal-to-noise ratio=1). It was confirmed that the interference of N O2 on N2 O5 detection is negligible, but can be significant for N O3 measurement when N O2 concentration is extremely high (>100 ppbv). Measurement of N2 O5 in ambient air was made in the urban area of Tokyo, Japan. Observed data demonstrated the capacity of the TC/LIF instrument with a powerful dye laser and a single-path excitation cell for ambient measurements. In this article, we focus on the instrumentation and characterization.

元の言語English
記事番号064101
ジャーナルReview of Scientific Instruments
76
発行部数6
DOI
出版物ステータスPublished - 2005
外部発表Yes

Fingerprint

laser induced fluorescence
nitrates
Nitrates
Fluorescence
Dye lasers
Lasers
Laser beams
dye lasers
excitation
cells
laser beams
High power lasers
interference
Air
Titration
air
Light sources
Optical fibers
Signal to noise ratio
Pyrolysis

ASJC Scopus subject areas

  • Instrumentation
  • Physics and Astronomy (miscellaneous)

これを引用

@article{ce1d96d4b4e74b718e0cbdbcb885ddb8,
title = "Development of a measurement system for nitrate radical and dinitrogen pentoxide using a thermal conversion/laser-induced fluorescence technique",
abstract = "An instrument for measuring atmospheric nitrate radical (N O3) and dinitrogen pentoxide (N2 O5) has been developed by a thermal conversion/laser-induced fluorescence (TC/LIF) technique. N2 O5 is thermally decomposed and converted to N O3, which is measured by laser-induced fluorescence. In situ, fast-response, sensitive measurement of N O3 N2 O5 is expected by use of LIF. In detecting N O3, dual-wavelength excitation at 622.96 and 618.81 nm was adopted to remove potential interference and to guarantee high selectivity. A high-power dye laser system was used as the source of excitation light. To measure ambient air directly, the N O3 detection cell was placed on the rooftop. The laser beam was guided by an optical fiber into the excitation cell. Transmittance of the laser beam was 80{\%} for a 10 m long fiber. To calibrate the instrument, the series of thermal decomposition of N2 O5 and the gas phase titration of N O3 by NO were conducted. N O3 reduction by adding NO was also applied to determine accurately the zero points of the detector. After optimization of conditions such as gate timing in photon counting and the settings of the N2 O5 converter, the present detection limits of N O3 and N2 O5 were determined to be 4 and 6 pptv, respectively, for the integration time of 10 min (signal-to-noise ratio=1). It was confirmed that the interference of N O2 on N2 O5 detection is negligible, but can be significant for N O3 measurement when N O2 concentration is extremely high (>100 ppbv). Measurement of N2 O5 in ambient air was made in the urban area of Tokyo, Japan. Observed data demonstrated the capacity of the TC/LIF instrument with a powerful dye laser and a single-path excitation cell for ambient measurements. In this article, we focus on the instrumentation and characterization.",
author = "Jun Matsumoto and Naohiro Kosugi and Hidekazu Imai and Yoshizumi Kajii",
year = "2005",
doi = "10.1063/1.1927098",
language = "English",
volume = "76",
journal = "Review of Scientific Instruments",
issn = "0034-6748",
publisher = "American Institute of Physics Publising LLC",
number = "6",

}

TY - JOUR

T1 - Development of a measurement system for nitrate radical and dinitrogen pentoxide using a thermal conversion/laser-induced fluorescence technique

AU - Matsumoto, Jun

AU - Kosugi, Naohiro

AU - Imai, Hidekazu

AU - Kajii, Yoshizumi

PY - 2005

Y1 - 2005

N2 - An instrument for measuring atmospheric nitrate radical (N O3) and dinitrogen pentoxide (N2 O5) has been developed by a thermal conversion/laser-induced fluorescence (TC/LIF) technique. N2 O5 is thermally decomposed and converted to N O3, which is measured by laser-induced fluorescence. In situ, fast-response, sensitive measurement of N O3 N2 O5 is expected by use of LIF. In detecting N O3, dual-wavelength excitation at 622.96 and 618.81 nm was adopted to remove potential interference and to guarantee high selectivity. A high-power dye laser system was used as the source of excitation light. To measure ambient air directly, the N O3 detection cell was placed on the rooftop. The laser beam was guided by an optical fiber into the excitation cell. Transmittance of the laser beam was 80% for a 10 m long fiber. To calibrate the instrument, the series of thermal decomposition of N2 O5 and the gas phase titration of N O3 by NO were conducted. N O3 reduction by adding NO was also applied to determine accurately the zero points of the detector. After optimization of conditions such as gate timing in photon counting and the settings of the N2 O5 converter, the present detection limits of N O3 and N2 O5 were determined to be 4 and 6 pptv, respectively, for the integration time of 10 min (signal-to-noise ratio=1). It was confirmed that the interference of N O2 on N2 O5 detection is negligible, but can be significant for N O3 measurement when N O2 concentration is extremely high (>100 ppbv). Measurement of N2 O5 in ambient air was made in the urban area of Tokyo, Japan. Observed data demonstrated the capacity of the TC/LIF instrument with a powerful dye laser and a single-path excitation cell for ambient measurements. In this article, we focus on the instrumentation and characterization.

AB - An instrument for measuring atmospheric nitrate radical (N O3) and dinitrogen pentoxide (N2 O5) has been developed by a thermal conversion/laser-induced fluorescence (TC/LIF) technique. N2 O5 is thermally decomposed and converted to N O3, which is measured by laser-induced fluorescence. In situ, fast-response, sensitive measurement of N O3 N2 O5 is expected by use of LIF. In detecting N O3, dual-wavelength excitation at 622.96 and 618.81 nm was adopted to remove potential interference and to guarantee high selectivity. A high-power dye laser system was used as the source of excitation light. To measure ambient air directly, the N O3 detection cell was placed on the rooftop. The laser beam was guided by an optical fiber into the excitation cell. Transmittance of the laser beam was 80% for a 10 m long fiber. To calibrate the instrument, the series of thermal decomposition of N2 O5 and the gas phase titration of N O3 by NO were conducted. N O3 reduction by adding NO was also applied to determine accurately the zero points of the detector. After optimization of conditions such as gate timing in photon counting and the settings of the N2 O5 converter, the present detection limits of N O3 and N2 O5 were determined to be 4 and 6 pptv, respectively, for the integration time of 10 min (signal-to-noise ratio=1). It was confirmed that the interference of N O2 on N2 O5 detection is negligible, but can be significant for N O3 measurement when N O2 concentration is extremely high (>100 ppbv). Measurement of N2 O5 in ambient air was made in the urban area of Tokyo, Japan. Observed data demonstrated the capacity of the TC/LIF instrument with a powerful dye laser and a single-path excitation cell for ambient measurements. In this article, we focus on the instrumentation and characterization.

UR - http://www.scopus.com/inward/record.url?scp=20544476185&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=20544476185&partnerID=8YFLogxK

U2 - 10.1063/1.1927098

DO - 10.1063/1.1927098

M3 - Article

AN - SCOPUS:20544476185

VL - 76

JO - Review of Scientific Instruments

JF - Review of Scientific Instruments

SN - 0034-6748

IS - 6

M1 - 064101

ER -