Development of microfluidic-based telemedicine for diabetes care and screening

Lianqing Liu, Hiroyasu Iwata, Ping Yao, Steve Tung, Zhikun Zhan, Jianning Hua, Zaili Dong

研究成果: Article査読

8 被引用数 (Scopus)


This paper describes a microfluidic-based telemedicine system for insulin detection and conveying the results digitally to physicians located off-site through the Internet. The communication infrastructure is designed to transfer the digital information from the assay site to established healthcare facilities where trained medical professionals can directly assist the detection process and provide diagnosis. The insulin detection device of the telemedicine system is an integrated polydimethysiloxane (PDMS) microfluidic device consisting of two pneumatic micropumps and one micromixer. The insulin detection protocol is based on microbeads-based double-antibody sandwich immunoassay coupled with luminal–hydrogen peroxide (H2O2) chemiluminescence. A photometer detects the peak value of the luminous intensity, which indicates the insulin concentration of the patient plasma sample tested. The calibration curves of the insulin detection protocol have been quantified. The insulin detection limit of the microfluidic system is 4×10−10 mol/l, which meets the common requirement of the current clinical studies of diabetes. Multiple immune indicators of diabetes can potentially be detected synchronously by the microfluidic system, thus providing physicians with integrative results necessary for accurate diagnosis via the Internet. The combination of microfluidic devices and telemedicine strategy offers new opportunities for diabetes care and screening, especially in rural areas where patients must travel long distances to physicians for healthcare information that might be obtained more cost effectively by local, less-trained personnel.

ジャーナルTransactions of the Institute of Measurement and Control
出版ステータスPublished - 2013 10月

ASJC Scopus subject areas

  • 器械工学


「Development of microfluidic-based telemedicine for diabetes care and screening」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。