Differentiable allophone graphs for language-universal speech recognition

Brian Yan, Siddharth Dalmia, David R. Mortensen, Florian Metze, Shinji Watanabe

研究成果: Conference contribution

抄録

Building language-universal speech recognition systems entails producing phonological units of spoken sound that can be shared across languages. While speech annotations at the languagespecific phoneme or surface levels are readily available, annotations at a universal phone level are relatively rare and difficult to produce. In this work, we present a general framework to derive phone-level supervision from only phonemic transcriptions and phone-to-phoneme mappings with learnable weights represented using weighted finite-state transducers, which we call differentiable allophone graphs. By training multilingually, we build a universal phone-based speech recognition model with interpretable probabilistic phone-to-phoneme mappings for each language. These phone-based systems with learned allophone graphs can be used by linguists to document new languages, build phone-based lexicons that capture rich pronunciation variations, and re-evaluate the allophone mappings of seen language. We demonstrate the aforementioned benefits of our proposed framework with a system trained on 7 diverse languages.

本文言語English
ホスト出版物のタイトル22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021
出版社International Speech Communication Association
ページ356-360
ページ数5
ISBN(電子版)9781713836902
DOI
出版ステータスPublished - 2021
外部発表はい
イベント22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021 - Brno, Czech Republic
継続期間: 2021 8月 302021 9月 3

出版物シリーズ

名前Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
1
ISSN(印刷版)2308-457X
ISSN(電子版)1990-9772

Conference

Conference22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021
国/地域Czech Republic
CityBrno
Period21/8/3021/9/3

ASJC Scopus subject areas

  • 言語および言語学
  • 人間とコンピュータの相互作用
  • 信号処理
  • ソフトウェア
  • モデリングとシミュレーション

フィンガープリント

「Differentiable allophone graphs for language-universal speech recognition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル