Diffusive relaxation limit of classical solutions to the damped compressible Euler equations

Jiang Xu*, Shuichi Kawashima

*この研究の対応する著者

研究成果: Article査読

5 被引用数 (Scopus)

抄録

We construct (uniform) global classical solutions to the damped compressible Euler equations on the framework of general Besov spaces which includes both the usual Sobolev spaces Hs(Rd) (s>1+d/2) and the critical Besov space B2,11+d/2(Rd). Such extension heavily depends on a revision of commutator estimates and an elementary fact that indicates the connection between homogeneous and inhomogeneous Chemin-Lerner spaces. Furthermore, we obtain the diffusive relaxation limit of Euler equations towards the porous medium equation, by means of Aubin-Lions compactness argument.

本文言語English
ページ(範囲)771-796
ページ数26
ジャーナルJournal of Differential Equations
256
2
DOI
出版ステータスPublished - 2014 1 15
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Diffusive relaxation limit of classical solutions to the damped compressible Euler equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル