Dirac structures in vakonomic mechanics

Fernando Jiménez*, Hiroaki Yoshimura

*この研究の対応する著者

研究成果: Article査読

3 被引用数 (Scopus)

抄録

In this paper, we explore dynamics of the nonholonomic system called vakonomic mechanics in the context of Lagrange-Dirac dynamical systems using a Dirac structure and its associated Hamilton-Pontryagin variational principle. We first show the link between vakonomic mechanics and nonholonomic mechanics from the viewpoints of Dirac structures as well as Lagrangian submanifolds. Namely, we clarify that Lagrangian submanifold theory cannot represent nonholonomic mechanics properly, but vakonomic mechanics instead. Second, in order to represent vakonomic mechanics, we employ the space TQ×V*, where a vakonomic Lagrangian is defined from a given Lagrangian (possibly degenerate) subject to nonholonomic constraints. Then, we show how implicit vakonomic Euler-Lagrange equations can be formulated by the Hamilton-Pontryagin variational principle for the vakonomic Lagrangian on the extended Pontryagin bundle (TQ⊕T*Q)×V*. Associated with this variational principle, we establish a Dirac structure on (TQ⊕T*Q)×V* in order to define an intrinsic vakonomic Lagrange-Dirac system. Furthermore, we also establish another construction for the vakonomic Lagrange-Dirac system using a Dirac structure on T*Q×V*, where we introduce a vakonomic Dirac differential. Finally, we illustrate our theory of vakonomic Lagrange-Dirac systems by some examples such as the vakonomic skate and the vertical rolling coin.

本文言語English
ページ(範囲)158-178
ページ数21
ジャーナルJournal of Geometry and Physics
94
DOI
出版ステータスPublished - 2015 8月 1

ASJC Scopus subject areas

  • 数理物理学
  • 物理学および天文学(全般)
  • 幾何学とトポロジー

フィンガープリント

「Dirac structures in vakonomic mechanics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル