抄録
A Monte Carlo simulation of the scattering processes of kV electrons penetrating into aluminum was performed. The simulation is based on the use of different types of differential cross-sections for individual elastic and inelastic scattering: (i) Elastic scattering; the differential cross-sections derived by partial wave expansion method. (ii) Inelastic scattering; Gryzinski's excitation function for inner-shell electron excitation, Streitwolfs excitation function for conduction electron excitation, and Quinn's mean free path for plasmon excitation. For verification the energy loss spectra obtained from the Monte Carlo calculations were then compared with experiment done with commercial type Auger microprobes, JAMP-3, for angle of incidence 45° and JAMP-10 for normal incidence at primary electron energies of 1.5 and 3.0 keV, respectively. The results show satisfactory agreement between theory and experiment.
本文言語 | English |
---|---|
ページ(範囲) | 250-266 |
ページ数 | 17 |
ジャーナル | Surface Science |
巻 | 133 |
号 | 1 |
DOI | |
出版ステータス | Published - 1983 10月 1 |
外部発表 | はい |
ASJC Scopus subject areas
- 凝縮系物理学
- 表面および界面
- 表面、皮膜および薄膜
- 材料化学