抄録
The Riemann zeta-function ζ(s) extends to an outer function in ergodic Hardy spaces on Tω, the infinite-dimensional torus indexed by primes p. This enables us to investigate collectively certain properties of Dirichlet series of the form ({ap}, s) = πp (1 - a pP-s)-1 for {ap} in T ω. Among other things, using the Haar measure on T ω for measuring the asymptotic behavior of ζ(s) in the critical strip, we shall prove, in a weak sense, the mean-value theorem for ζ(s), equivalent to the Lindelöf hypothesis.
本文言語 | English |
---|---|
ページ(範囲) | 157-184 |
ページ数 | 28 |
ジャーナル | Studia Mathematica |
巻 | 187 |
号 | 2 |
DOI | |
出版ステータス | Published - 2008 |
ASJC Scopus subject areas
- 数学 (全般)