Discretization principles for linear two-point boundary value problems, III

Tetsuro Yamamoto, Shinichi Oishi, M. Zuhair Nashed, Zi Cai Li, Qing Fang

    研究成果: Article

    1 引用 (Scopus)

    抜粋

    This paper extends results of Yamamoto et al. (Numer. Funct. Anal. Optimiz. 2008; 29:213-224) to the boundary value problem [image omitted] where the sign of r(x) is indefinite. Let HνAνUν= fν be the finite difference equations on partitions [image omitted], =1,2, with [image omitted] as , where Hν and A ν are diagonal and tridiagonal matrices, respectively, and f ν are vectors generated by discretization of f(x). Then equivalent conditions for the boundary value problem to have a unique solution u ∈ C2[a, b] are given in terms of [image omitted] and [image omitted].

    元の言語English
    ページ(範囲)1180-1200
    ページ数21
    ジャーナルNumerical Functional Analysis and Optimization
    29
    発行部数9-10
    DOI
    出版物ステータスPublished - 2008 9

      フィンガープリント

    ASJC Scopus subject areas

    • Analysis
    • Control and Optimization
    • Signal Processing
    • Computer Science Applications

    これを引用