## 抄録

The distance metric learning is the method to learn the distance metric from training data considering its statistical characteristics under the arbitrary constraints. To obtain the desirable distance metric, the optimization problem is solved. Most of the distance metric learning methods aim to gain the global optimal metric matrix. However there is a possibility that the global metric matrix cannot express the statistical characteristics of each category in detail. In addition, if the dimension of input data increase, the computational cost of calculating distance between data increases either. To avoid this problem, we adopt the way to use the l_{1} regularization to gain sparse metric matrix. By combining those, we focus on the way to deriving the plural metric matrices with a sparse structure in this study. To verify the effective ness of our proposed method, we conduct simulation experiments by using UCI machine learning repository.

本文言語 | English |
---|---|

ホスト出版物のタイトル | Proceedings of 2016 International Symposium on Information Theory and Its Applications, ISITA 2016 |

出版社 | Institute of Electrical and Electronics Engineers Inc. |

ページ | 285-289 |

ページ数 | 5 |

ISBN（電子版） | 9784885523090 |

出版ステータス | Published - 2017 2月 2 |

イベント | 3rd International Symposium on Information Theory and Its Applications, ISITA 2016 - Monterey, United States 継続期間: 2016 10月 30 → 2016 11月 2 |

### Other

Other | 3rd International Symposium on Information Theory and Its Applications, ISITA 2016 |
---|---|

国/地域 | United States |

City | Monterey |

Period | 16/10/30 → 16/11/2 |

## ASJC Scopus subject areas

- コンピュータ ネットワークおよび通信
- ハードウェアとアーキテクチャ
- 情報システム
- 信号処理
- 図書館情報学

## フィンガープリント

「Distance metric learning based on different ℓ_{1}regularized metric matrices in each category」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。