TY - JOUR
T1 - Distinguishing between inflationary models from cosmic microwave background
AU - Tsujikawa, Shinji
PY - 2014/6
Y1 - 2014/6
N2 - In this paper, inflationary cosmology is reviewed, paying particular attention to its observational signatures associated with large-scale density perturbations generated from quantum fluctuations. In the most general scalar-tensor theories with second-order equations of motion, we derive the scalar spectral index ns, the tensor-to-scalar ratio r, and the nonlinear estimator fNL of primordial non-Gaussianities to confront models with observations of cosmic microwave background (CMB) temperature anisotropies. Our analysis includes models such as potential-driven slow-roll inflation, k-inflation, Starobinsky inflation, and Higgs inflation with non-minimal/derivative/Galileon couplings. We constrain a host of inflationary models by using the Planck data combined with other measurements to find models most favored observationally in the current literature. We also study anisotropic inflation based on a scalar coupling with a vector (or two-form) field and discuss its observational signatures appearing in the two-point and three-point correlation functions of scalar and tensor perturbations.
AB - In this paper, inflationary cosmology is reviewed, paying particular attention to its observational signatures associated with large-scale density perturbations generated from quantum fluctuations. In the most general scalar-tensor theories with second-order equations of motion, we derive the scalar spectral index ns, the tensor-to-scalar ratio r, and the nonlinear estimator fNL of primordial non-Gaussianities to confront models with observations of cosmic microwave background (CMB) temperature anisotropies. Our analysis includes models such as potential-driven slow-roll inflation, k-inflation, Starobinsky inflation, and Higgs inflation with non-minimal/derivative/Galileon couplings. We constrain a host of inflationary models by using the Planck data combined with other measurements to find models most favored observationally in the current literature. We also study anisotropic inflation based on a scalar coupling with a vector (or two-form) field and discuss its observational signatures appearing in the two-point and three-point correlation functions of scalar and tensor perturbations.
UR - http://www.scopus.com/inward/record.url?scp=84905054244&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84905054244&partnerID=8YFLogxK
U2 - 10.1093/ptep/ptu047
DO - 10.1093/ptep/ptu047
M3 - Article
AN - SCOPUS:84905054244
SN - 2050-3911
VL - 2014
JO - Progress of Theoretical and Experimental Physics
JF - Progress of Theoretical and Experimental Physics
IS - 6
M1 - 06B104
ER -