Distinguishing between inflationary models from cosmic microwave background

Shinji Tsujikawa*

*この研究の対応する著者

研究成果: Article査読

15 被引用数 (Scopus)

抄録

In this paper, inflationary cosmology is reviewed, paying particular attention to its observational signatures associated with large-scale density perturbations generated from quantum fluctuations. In the most general scalar-tensor theories with second-order equations of motion, we derive the scalar spectral index ns, the tensor-to-scalar ratio r, and the nonlinear estimator fNL of primordial non-Gaussianities to confront models with observations of cosmic microwave background (CMB) temperature anisotropies. Our analysis includes models such as potential-driven slow-roll inflation, k-inflation, Starobinsky inflation, and Higgs inflation with non-minimal/derivative/Galileon couplings. We constrain a host of inflationary models by using the Planck data combined with other measurements to find models most favored observationally in the current literature. We also study anisotropic inflation based on a scalar coupling with a vector (or two-form) field and discuss its observational signatures appearing in the two-point and three-point correlation functions of scalar and tensor perturbations.

本文言語English
論文番号06B104
ジャーナルProgress of Theoretical and Experimental Physics
2014
6
DOI
出版ステータスPublished - 2014 6月
外部発表はい

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Distinguishing between inflationary models from cosmic microwave background」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル