Diversity and critical behavior in prisoner's dilemma game

C. K. Yun*, N. Masuda, B. Kahng

*この研究の対応する著者

研究成果査読

4 被引用数 (Scopus)

抄録

The prisoner's dilemma (PD) game is a simple model for understanding cooperative patterns in complex systems. Here, we study a PD game problem in scale-free networks containing hierarchically organized modules and controllable shortcuts connecting separated hubs. We find that cooperator clusters exhibit a percolation transition in the parameter space (p,b), where p is the occupation probability of shortcuts and b is the temptation payoff in the PD game. The cluster size distribution follows a power law at the transition point. Such a critical behavior, resulting from the combined effect of stochastic processes in the PD game and the heterogeneity of complex network structure, illustrates diversities arising in social relationships and in forming cooperator groups in real-world systems.

本文言語English
論文番号057102
ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
83
5
DOI
出版ステータスPublished - 2011 5 25
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Diversity and critical behavior in prisoner's dilemma game」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル