TY - JOUR
T1 - Doping-dependent evolution of the electronic structure of La2-xSrxCuO4 in the superconducting and metallic phases
AU - Kim, C.
AU - Nakamura, M.
AU - Yoshida, T.
AU - Mizokawa, T.
AU - Fujimori, A.
AU - Shen, Z. X.
AU - Kakeshita, T.
AU - Eisaki, H.
AU - Uchida, S.
AU - Ino, A.
PY - 2002/3/1
Y1 - 2002/3/1
N2 - The electronic structure of the La2-xSrxCuO4 (LSCO) system has been studied by angle-resolved photo-emission spectroscopy (ARPES). We report on the evolution of the Fermi surface, the superconducting gap, and the band dispersion around the extended saddle point k = (π,0) with hole doping in the superconducting and metallic phases. As hole concentration x decreases, the flat band at (π,0) moves from above the Fermi level (EF) for x>0.2 to below EF for x<0.2, and is further lowered down to x = 0.05. From the leading-edge shift of ARPES spectra, the magnitude of the superconducting gap around (π,0) is found to monotonically increase as x decreases from x = 0.30 down to x = 0.05 even though Tc decreases in the underdoped region, and the superconducting gap appears to smoothly evolve into the normal-state gap at x = 0.05. It is shown that the energy scales characterizing these low-energy structures have similar doping dependences. For the heavily overdoped sample (x = 0.30), the band dispersion and the ARPES spectral line shape are analyzed using a simple phenomenological self-energy form, and the electronic effective mass enhancement factor m*/mb≃2 has been found. As the hole concentration decreases, an incoherent component that cannot be described within the simple self-energy analysis grows intense in the high-energy tail of the ARPES peak. Some unusual features of the electronic structure observed for the underdoped region (x≤0.10) are consistent with numerical works on the stripe model.
AB - The electronic structure of the La2-xSrxCuO4 (LSCO) system has been studied by angle-resolved photo-emission spectroscopy (ARPES). We report on the evolution of the Fermi surface, the superconducting gap, and the band dispersion around the extended saddle point k = (π,0) with hole doping in the superconducting and metallic phases. As hole concentration x decreases, the flat band at (π,0) moves from above the Fermi level (EF) for x>0.2 to below EF for x<0.2, and is further lowered down to x = 0.05. From the leading-edge shift of ARPES spectra, the magnitude of the superconducting gap around (π,0) is found to monotonically increase as x decreases from x = 0.30 down to x = 0.05 even though Tc decreases in the underdoped region, and the superconducting gap appears to smoothly evolve into the normal-state gap at x = 0.05. It is shown that the energy scales characterizing these low-energy structures have similar doping dependences. For the heavily overdoped sample (x = 0.30), the band dispersion and the ARPES spectral line shape are analyzed using a simple phenomenological self-energy form, and the electronic effective mass enhancement factor m*/mb≃2 has been found. As the hole concentration decreases, an incoherent component that cannot be described within the simple self-energy analysis grows intense in the high-energy tail of the ARPES peak. Some unusual features of the electronic structure observed for the underdoped region (x≤0.10) are consistent with numerical works on the stripe model.
UR - http://www.scopus.com/inward/record.url?scp=0242425464&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0242425464&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0242425464
VL - 65
SP - 945041
EP - 9450411
JO - Physical Review B-Condensed Matter
JF - Physical Review B-Condensed Matter
SN - 0163-1829
IS - 9
M1 - 094504
ER -