Double Grothendieck polynomials for symplectic and odd orthogonal Grassmannians

Thomas Hudson, Takeshi Ikeda, Tomoo Matsumura, Hiroshi Naruse

研究成果: Article

抜粋

We study the double Grothendieck polynomials of Kirillov–Naruse for the symplectic and odd orthogonal Grassmannians. These functions are explicitly written as Pfaffian sum form and are identified with the stable limits of fundamental classes of the Schubert varieties in torus equivariant connective K-theory of these isotropic Grassmannians. We also provide a combinatorial description of the ring formally spanned be the double Grothendieck polynomials.

元の言語English
ページ(範囲)294-314
ページ数21
ジャーナルJournal of Algebra
546
DOI
出版物ステータスPublished - 2020 3 15
外部発表Yes

ASJC Scopus subject areas

  • Algebra and Number Theory

フィンガープリント Double Grothendieck polynomials for symplectic and odd orthogonal Grassmannians' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用