Double Schubert polynomials for the classical Lie groups

Takeshi Ikeda, Leonardo Mihalcea, Hiroshi Naruse

研究成果: Paper

1 引用 (Scopus)

抜粋

For each infinite series of the classical Lie groups of type B, C or D, we introduce a family of polynomials parametrized by the elements of the corresponding Weyl group of infinite rank. These polynomials represent the Schubert classes in the equivariant cohomology of the corresponding flag variety. They satisfy a stability property, and are a natural extension of the (single) Schubert polynomials of Billey and Haiman, which represent non-equivariant Schubert classes. When indexed by maximal Grassmannian elements of the Weyl group, these polynomials are equal to the factorial analogues of Schur Q- or P-functions defined earlier by Ivanov.

元の言語English
ページ665-676
ページ数12
出版物ステータスPublished - 2008
外部発表Yes
イベント20th International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC'08 - Valparaiso, Chile
継続期間: 2008 6 232008 6 27

Other

Other20th International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC'08
Chile
Valparaiso
期間08/6/2308/6/27

ASJC Scopus subject areas

  • Algebra and Number Theory

フィンガープリント Double Schubert polynomials for the classical Lie groups' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Ikeda, T., Mihalcea, L., & Naruse, H. (2008). Double Schubert polynomials for the classical Lie groups. 665-676. 論文発表場所 20th International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC'08, Valparaiso, Chile.