Dynamics of nematic liquid crystal flows: The quasilinear approach

Matthias Georg Hieber*, Manuel Nesensohn, Jan Pruss, Katharina Schade

*この研究の対応する著者

研究成果: Article査読

27 被引用数 (Scopus)

抄録

Consider the (simplified) Leslie.Ericksen model for the flow of nematic liquid crystals in a bounded domain ω ⊂ ℝn for n <1. This article develops a complete dynamic theory for these equations, analyzing the system as a quasilinear parabolic evolution equation in an Lp-Lq-setting. First, the existence of a unique local strong solution is proved. This solution extends to a global strong solution, provided the initial data are close to an equilibrium or the solution is eventually bounded in the natural norm of the underlying state space. In this case the solution converges exponentially to an equilibrium. Moreover, the solution is shown to be real analytic, jointly in time and space.

本文言語English
ページ(範囲)397-408
ページ数12
ジャーナルAnnales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis
33
2
DOI
出版ステータスPublished - 2016 3月 1
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 数理物理学

フィンガープリント

「Dynamics of nematic liquid crystal flows: The quasilinear approach」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル