Dynamics of teichmüller modular groups and topology of moduli spaces of Riemann surfaces of infinite type

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We investigate the dynamics of the Teichmüller modular group on the Teichmüller space of a Riemann surface of infinite topological type. Since the modular group does not necessarily act discontinuously, the quotient space cannot inherit a rich geometric structure from the Teichmüller space. However, we introduce the set of points where the action of the Teichmüller modular group is stable, and we prove that this region of stability is generic in the Teichmüller space. By taking the quotient and completion with respect to the Teichmüller distance, we obtain a geometric object that we regard as an appropriate moduli space of the quasiconformally equivalent complex structures admitted on a topologically infinite Riemann surface.

本文言語English
ページ(範囲)1-64
ページ数64
ジャーナルGroups, Geometry, and Dynamics
12
1
DOI
出版ステータスPublished - 2018

ASJC Scopus subject areas

  • Geometry and Topology
  • Discrete Mathematics and Combinatorics

フィンガープリント 「Dynamics of teichmüller modular groups and topology of moduli spaces of Riemann surfaces of infinite type」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル