ECNet: a fast, accurate, and lightweight edge-cloud network system based on cascading structure

Libo Hu, Tao Wang, Hiroshi Watanabe, Shohei Enomoto, Xu Shi, Akira Sakamoto, Takeharu Eda

研究成果: Conference contribution

抄録

The pervasiveness of 'Internet-of-Things' in daily life has led to a recent surge in fog computing, encompassing a collaboration of cloud computing and edge intelligence. As a significant field of IoT, real-time detection and classification have a huge demand. Due to the insufficiency of computing power in mobile devices and the increment of network bandwidth, combination of edge devices and cloud servers would be an accessible orientation for real-time tasks. In this work, we present ECNet - an edge-cloud network system dealing with the balance between performance and time cost. We propose to transmit the output ferefature map of an exit point to the cloud with offload controller and quantizer deployed to minimize the transmission cost. ECNet is tested to reach a balance between processing time and accuracy performance with reducing transmission cost down to 25%. We also consider implementing an integrated feature map encoder to further reduce the bandwidth demand and meanwhile minimize the loss of accuracy. Additional achievements could be expected in our future work.

本文言語English
ホスト出版物のタイトル2020 IEEE 9th Global Conference on Consumer Electronics, GCCE 2020
出版社Institute of Electrical and Electronics Engineers Inc.
ページ186-189
ページ数4
ISBN(電子版)9781728198026
DOI
出版ステータスPublished - 2020 10月 13
イベント9th IEEE Global Conference on Consumer Electronics, GCCE 2020 - Kobe, Japan
継続期間: 2020 10月 132020 10月 16

出版物シリーズ

名前2020 IEEE 9th Global Conference on Consumer Electronics, GCCE 2020

Conference

Conference9th IEEE Global Conference on Consumer Electronics, GCCE 2020
国/地域Japan
CityKobe
Period20/10/1320/10/16

ASJC Scopus subject areas

  • 信号処理
  • 電子工学および電気工学
  • メディア記述
  • 器械工学
  • コンピュータ ネットワークおよび通信
  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「ECNet: a fast, accurate, and lightweight edge-cloud network system based on cascading structure」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル