Effect of transference velocity and hydrogen pressure on porosity and pore morphology of lotus-type porous copper fabricated by a continuous casting technique

J. S. Park, S. K. Hyun, S. Suzuki, H. Nakajima

研究成果: Article査読

117 被引用数 (Scopus)

抄録

A continuous casting technique was developed to fabricate, in a pressurized hydrogen atmosphere, lotus-type porous copper with long cylindrical pores aligned parallel to the solidification direction. The molten copper dissolving the hydrogen was pulled downward to be solidified through a cooled mould at a given transference velocity. This technique has the benefit of producing long-sized lotus-type porous metal slabs as long as 700 mm. The effects of the hydrogen gas pressure and the transference velocity on the porosity and the pore morphology were investigated. The porosity was independent of the transference velocity but dependent on the hydrogen gas pressure. The average pore diameter and pore length were affected by the changes of both the transference velocity and hydrogen gas pressure. The change of transference velocity affected the pore formation position near the slab surface. The porosity and pore size were therefore well controlled by the transference velocity and hydrogen gas pressure. It is concluded that the continuous casting technique is a promising method for the mass production of lotus-type porous metals.

本文言語English
ページ(範囲)5646-5654
ページ数9
ジャーナルActa Materialia
55
16
DOI
出版ステータスPublished - 2007 9
外部発表はい

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • セラミックおよび複合材料
  • ポリマーおよびプラスチック
  • 金属および合金

フィンガープリント

「Effect of transference velocity and hydrogen pressure on porosity and pore morphology of lotus-type porous copper fabricated by a continuous casting technique」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル