Effects of bifurcations on the energy level statistics for oval billiards

H. Makino, T. Harayama, Y. Aizawa

研究成果: Article査読

24 被引用数 (Scopus)

抄録

We studied the energy level statistics for one parameter family of oval billiards whose classical phase space consists of some regular and some irregular components. As the parameter is varied, a transition from an integrable system to a strongly chaotic one occurs with successive bifurcations. We applied the Berry-Robnik formula to the level-spacing distributions for a variety of shapes of quantum oval billiards and found some striking effects of bifurcations in the classical mechanical systems on the level-spacing distributions. The validity of the Berry-Robnik formula is also checked for those shapes of the oval billiard for which there exist two separated chaotic components in the phase space.

本文言語English
ページ(範囲)4026-4035
ページ数10
ジャーナルPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
59
4
DOI
出版ステータスPublished - 1999 1月 1
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Effects of bifurcations on the energy level statistics for oval billiards」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル