Effects of sampling and spatio/temporal granularity in traffic monitoring on anomaly detectability

Keisuke Ishibashi*, Ryoichi Kawahara, Tatsuya Mori, Tsuyoshi Kondoh, Shoichiro Asano

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We quantitatively evaluate how sampling and spatio/ temporal granularity in traffic monitoring affect the detectability of anomalous traffic. Those parameters also affect the monitoring burden, so network operators face a trade-off between the monitoring burden and detectability and need to know which are the optimal paramter values. We derive equations to calculate the false positive ratio and false negative ratio for given values of the sampling rate, granularity, statistics of normal traffic, and volume of anomalies to be detected. Specifically, assuming that the normal traffic has a Gaussian distribution, which is parameterized by its mean and standard deviation, we analyze how sampling and monitoring granularity change these distribution parameters. This analysis is based on observation of the backbone traffic, which exhibits spatially uncorrelated and temporally long-range dependence. Then we derive the equations for detectability. With those equations, we can answer the practical questions that arise in actual network operations: what sampling rate to set to find the given volume of anomaly, or, if the sampling is too high for actual operation, what granularity is optimal to find the anomaly for a given lower limit of sampling rate.

本文言語English
ページ(範囲)466-476
ページ数11
ジャーナルIEICE Transactions on Communications
E95-B
2
DOI
出版ステータスPublished - 2012 2月
外部発表はい

ASJC Scopus subject areas

  • ソフトウェア
  • コンピュータ ネットワークおよび通信
  • 電子工学および電気工学

フィンガープリント

「Effects of sampling and spatio/temporal granularity in traffic monitoring on anomaly detectability」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル