Efficient algorithms to compute compressed longest common substrings and compressed palindromes

Wataru Matsubara, Shunsuke Inenaga, Akira Ishino, Ayumi Shinohara, Tomoyuki Nakamura, Kazuo Hashimoto

研究成果: Article

49 引用 (Scopus)

抜粋

This paper studies two problems on compressed strings described in terms of straight line programs (SLPs). One is to compute the length of the longest common substring of two given SLP-compressed strings, and the other is to compute all palindromes of a given SLP-compressed string. In order to solve these problems efficiently (in polynomial time w.r.t. the compressed size) decompression is never feasible, since the decompressed size can be exponentially large. We develop combinatorial algorithms that solve these problems in O (n4 log n) time with O (n3) space, and in O (n4) time with O (n2) space, respectively, where n is the size of the input SLP-compressed strings.

元の言語English
ページ(範囲)900-913
ページ数14
ジャーナルTheoretical Computer Science
410
発行部数8-10
DOI
出版物ステータスPublished - 2009 3 1

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

フィンガープリント Efficient algorithms to compute compressed longest common substrings and compressed palindromes' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用