Efficient, high-quality, GPU-based visualization of voxelized surface data with fine and complicated structures

Sven Forstmann, Jun Ohya

研究成果: Article

3 引用 (Scopus)

抜粋

This paper proposes a GPU-based method that can visualize voxelized surface data with fine and complicated features, has high rendering quality at interactive frame rates, and provides low memory consumption. The surface data is compressed using run-length encoding (RLE) for each level of detail (LOD). Then, the loop for the rendering process is performed on the GPU for the position of the viewpoint at each time instant. The scene is raycasted in planes, where each plane is perpendicular to the horizontal plane in the world coordinate system and passes through the viewpoint. For each plane, one ray is cast to rasterize all RLE elements intersecting this plane, starting from the viewpoint and ranging up to the maximum view distance. This rasterization process projects each RLE element passing the occlusion test onto the screen at a LOD that decreases with the distance of the RLE element from the viewpoint. Finally, the smoothing of voxels in screen space and full screen anti-aliasing is performed. To provide lighting calculations without storing the normal vector inside the RLE data structure, our algorithm recovers the normal vectors from the rendered scene's depth buffer. After the viewpoint changes, the same process is re-executed for the new viewpoint. Experiments using different scenes have shown that the proposed algorithm is faster than the equivalent CPU implementation and other related methods. Our experiments further prove that this method is memory efficient and achieves high quality results.

元の言語English
ページ(範囲)3088-3099
ページ数12
ジャーナルIEICE Transactions on Information and Systems
E93-D
発行部数11
DOI
出版物ステータスPublished - 2010 11

ASJC Scopus subject areas

  • Software
  • Hardware and Architecture
  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering
  • Artificial Intelligence

フィンガープリント Efficient, high-quality, GPU-based visualization of voxelized surface data with fine and complicated structures' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用