Efficient large scale integration power/ground network optimization based on grid genetic algorithm

Yun Yang*, Atsushi Kurokawa, Yasuaki Inoue, Wenqing Zhao

*この研究の対応する著者

    研究成果: Article査読

    1 被引用数 (Scopus)

    抄録

    In this paper we propose a novel and efficient method for the optimization of the power/ground (P/G) network in VLSI circuit layouts with reliability constraints. Previous algorithms in the P/G network sizing used the sequence-of-linear-programming (SLP) algorithm to solve the nonlinear optimization problems. However the transformation from nonlinear network to linear subnetwork is not optimal enough. Our new method is inspired by the biological evolution and use the grid-geneticalgorithm (GGA) to solve the optimization problem. Experimental results show that new P/G network sizes are smaller than previous algorithms, as the fittest survival in the nature. Another significant advance is that GGA method can be applied for all P/G network problems because it can get the results directly no matter whether these problems are linear or not. Thus GGA can be adopted in the transient behavior of the P/G network sizing in the future, which recently faces on the obstacles in the solution of the complex nonlinear problems.

    本文言語English
    ページ(範囲)3412-3419
    ページ数8
    ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
    E88-A
    12
    DOI
    出版ステータスPublished - 2005 12月

    ASJC Scopus subject areas

    • 電子工学および電気工学
    • ハードウェアとアーキテクチャ
    • 情報システム

    フィンガープリント

    「Efficient large scale integration power/ground network optimization based on grid genetic algorithm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル