Efficient matrix computation for isogeometric discretizations with hierarchical B-splines in any dimension

Maodong Pan*, Bert Jüttler, Felix Scholz

*この研究の対応する著者

研究成果: Article査読

抄録

Hierarchical B-splines, which possess the local refinement capability, have been recognized as a useful tool in the context of isogeometric analysis. However, similar as for tensor-product B-splines, isogeometric simulations with hierarchical B-splines face a big computational burden from the perspective of matrix assembly, particularly if the spline degree p is high. To address this issue, we extend the recent work (Pan et al., 2020) – which introduced an efficient assembling approach for tensor-product B-splines – to the case of hierarchical B-splines. In the new approach, the integrand factor is transformed into piecewise polynomials via quasi-interpolation. Subsequently, the resulting elementary integrals are pre-computed and stored in a look-up table. Finally, the sum-factorization technique is adopted to accelerate the assembly process. We present a detailed analysis, which reveals that the presented method achieves the expected complexity of O(pd+1) per degree of freedom (without taking sparse matrix operations into account) under the assumption of mesh admissibility. We verify the efficiency of the new method by applying it to an elliptic problem on the three-dimensional domain and a parabolic problem on the four-dimensional domain in space–time, respectively. A comparison with standard Gaussian quadrature is also provided.

本文言語English
論文番号114210
ジャーナルComputer Methods in Applied Mechanics and Engineering
388
DOI
出版ステータスPublished - 2022 1 1
外部発表はい

ASJC Scopus subject areas

  • 計算力学
  • 材料力学
  • 機械工学
  • 物理学および天文学(全般)
  • コンピュータ サイエンスの応用

フィンガープリント

「Efficient matrix computation for isogeometric discretizations with hierarchical B-splines in any dimension」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル