Efficient two-component relativistic method for large systems

Hiromi Nakai*

*この研究の対応する著者

    研究成果: Conference contribution

    抄録

    This paper reviews a series of theoretical studies to develop efficient two-component (2c) relativistic method for large systems by the author's group. The basic theory is the infinite-order Douglas-Kroll-Hess (IODKH) method for many-electron Dirac-Coulomb Hamiltonian. The local unitary transformation (LUT) scheme can effectively produce the 2c relativistic Hamiltonian, and the divide-and-conquer (DC) method can achieve linear-scaling of Hartree-Fock and electron correlation methods. The frozen core potential (FCP) theoretically connects model potential calculations with the all-electron ones. The accompanying coordinate expansion with a transfer recurrence relation (ACE-TRR) scheme accelerates the computations of electron repulsion integrals with high angular momenta and long contractions.

    本文言語English
    ホスト出版物のタイトルInternational Conference of Computational Methods in Sciences and Engineering 2015, ICCMSE 2015
    出版社American Institute of Physics Inc.
    1702
    ISBN(電子版)9780735413498
    DOI
    出版ステータスPublished - 2015 12 31
    イベントInternational Conference of Computational Methods in Sciences and Engineering 2015, ICCMSE 2015 - Athens, Greece
    継続期間: 2015 3 202015 3 23

    Other

    OtherInternational Conference of Computational Methods in Sciences and Engineering 2015, ICCMSE 2015
    国/地域Greece
    CityAthens
    Period15/3/2015/3/23

    ASJC Scopus subject areas

    • 物理学および天文学(全般)

    フィンガープリント

    「Efficient two-component relativistic method for large systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル