抄録
The impedance behaviors of Si-O-C composite film electrodeposited on Cu microcones-arrayed current collector have been investigated to understand the electrochemical process kinetics that influences the cycling performance when used as a highly-durable anode in a lithium battery. The impedance was measured by using impedance spectroscopy in equilibrium conditions at various depths of discharge and during several hundred charge-discharge cycles. The measured impedance was interpreted with an equivalent circuit composed of solid electrolyte interphase (SEI) film, charge transfer and solid state diffusion. The impedance analysis shows that the change of charge transfer resistance is the main contribution to the total resistance change during discharge, but an abrupt augmentation of diffusive resistance at high depth of discharge is also observed which cannot be explained very well by the presented model. The impedance evolution of this electrode during charge-discharge cycles suggests that the slow growth of the SEI film as well as the increase of the electrode density are responsible for the capacity fading after long term cycling.
本文言語 | English |
---|---|
ページ(範囲) | 226-232 |
ページ数 | 7 |
ジャーナル | Journal of Power Sources |
巻 | 256 |
DOI | |
出版ステータス | Published - 2014 6月 15 |
ASJC Scopus subject areas
- 再生可能エネルギー、持続可能性、環境
- エネルギー工学および電力技術
- 物理化学および理論化学
- 電子工学および電気工学