Electronic structure of 3d transition metal compounds: systematic chemical trends and multiplet effects

A. Fujimori, A. E. Bocquet, T. Saitoh, T. Mizokawa

研究成果: Article

43 引用 (Scopus)

抜粋

The local electronic structure of 3d transition metal compounds is characterized by a few parameters, namely the ligand p to cation d charge transfer energy Δ, the dd Coulomb repulsion energy U, and the pd transfer integrals T. Values for these parameters deduced from the cluster model analysis of cation core level photoemission spectra are shown to exhibit systematic chemical trends as functions of cation atomic number, ligand, and cation valence. Physical properties of these compounds such as the magnitudes of the band gaps, pd covalency and the character of doped carriers, however, are not necessarily smooth functions of those variables but depend also on the nominal d electron number n due to the multiplet effects leading to the stabilization of the Hund's rule ground state. As an illustrative example, the electronic structure of valence-control Mn and Fe oxides is discussed.

元の言語English
ページ(範囲)141-152
ページ数12
ジャーナルJournal of Electron Spectroscopy and Related Phenomena
62
発行部数1-2
DOI
出版物ステータスPublished - 1993 3
外部発表Yes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Radiation
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Spectroscopy
  • Physical and Theoretical Chemistry

フィンガープリント Electronic structure of 3d transition metal compounds: systematic chemical trends and multiplet effects' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用