Electrospinning synthesis of wire-structured LiCoO 2 for electrode materials of high-power li-ion batteries

Yoshifumi Mizuno, Eiji Hosono*, Tatsuya Saito, Masashi Okubo, Daisuke Nishio-Hamane, Katsuyoshi Oh-Ishi, Tetsuichi Kudo, Haoshen Zhou

*この研究の対応する著者

研究成果: Article査読

45 被引用数 (Scopus)

抄録

An application of the Li-ion batteries to advanced transportation systems essentially requires the enhancement of the rate capability; thus, the fabrication of nanostructured cathode materials with the large surface area and short Li-ion diffusion length is particularly important. In this study, an electrospinning method was adopted for the synthesis of wire-structured LiCoO 2. The diameter of the as-spun fiber obtained from the precursor solution with multiwalled carbon nanotubes (vapor-grown carbon fiber, VGCF) was thinner than that of as-spun fiber obtained from the solution without VGCF. After the heat treatment, wire-structured LiCoO 2 was successfully obtained regardless of the existence of dispersed VGCF in the precursor solution, although the particle size of LiCoO 2 fabricated with VGCF was smaller than that of LiCoO 2 fabricated without VGCF. The charge/discharge and rate-capability experiments revealed that both resulting materials show the reversible Li-ion insertion/extraction reaction. However, due to the existence of a small irreversible capacity at the initial cycles, the interfacial resistance increases, resulting in the poor cyclability and lower charge/discharge rate capability, especially for nanowire LiCoO 2 fabricated with VGCF.

本文言語English
ページ(範囲)10774-10780
ページ数7
ジャーナルJournal of Physical Chemistry C
116
19
DOI
出版ステータスPublished - 2012 5 17
外部発表はい

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • エネルギー(全般)
  • 物理化学および理論化学
  • 表面、皮膜および薄膜

フィンガープリント

「Electrospinning synthesis of wire-structured LiCoO <sub>2</sub> for electrode materials of high-power li-ion batteries」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル