Elevator group supervisory control system using genetic network programming - Ranking processing and node function optimization

Toru Eguchi*, Kotaro Hirasawa, Jinglu Hu, Sandor Markon

*この研究の対応する著者

研究成果査読

抄録

Genetic Network Programming (GNP) has been proposed as a new method of evolutionary computations. Recently, GNP is applied to Elevator Group Supervisory Control System (EGSCS), that is, a benchmark of real world applications and its effectiveness is clarified. The EGSCS using GNP in the previous studies can control the elevator system using the conventional node functions. However, they do not have enough flexibility and generality for some uncertain factors due to the various different conditions in elevator systems. In this paper, several new frameworks of GNP for EGSCS are proposed in order to overcome the above problem considering the ranking calculation of elevators and node function optimization based on Real-coded GA. In the simulations, it is clarified that the proposed method can obtain better performances than the conventional methods.

本文言語English
ページ1-6
ページ数6
出版ステータスPublished - 2005 12 1
イベントSICE Annual Conference 2005 - Okayama, Japan
継続期間: 2005 8 82005 8 10

Conference

ConferenceSICE Annual Conference 2005
国/地域Japan
CityOkayama
Period05/8/805/8/10

ASJC Scopus subject areas

  • 制御およびシステム工学
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「Elevator group supervisory control system using genetic network programming - Ranking processing and node function optimization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル