Encoding the pure lambda calculus into hierarchical graph rewriting

Kazunori Ueda*

*この研究の対応する著者

研究成果

11 被引用数 (Scopus)

抄録

Fine-grained reformulation of the lambda calculus is expected to solve several difficulties with the notion of substitutions-definition, implementation and cost properties. However, previous attempts including those using explicit substitutions and those using Interaction Nets were not ideally simple when it came to the encoding of the pure (as opposed to weak) lambda calculus. This paper presents a novel, fine-grained, and highly asynchronous encoding of the pure lambda calculus using LMNtal, a hierarchical graph rewriting language, and discusses its properties. The major strength of the encoding is that it is significantly simpler than previous encodings, making it promising as an alternative formulation, rather than just the encoding, of the pure lambda calculus. The membrane construct of LMNtal plays an essential role in encoding colored tokens and operations on them. The encoding has been tested using the publicly available LMNtal implementation.

本文言語English
ホスト出版物のタイトルRewriting Techniques and Applications - 19th International Conference, RTA 2008, Proceedings
ページ392-408
ページ数17
DOI
出版ステータスPublished - 2008
イベント19th International Conference on Rewriting Techniques and Applications, RTA 2008 - Hagenberg, Austria
継続期間: 2008 7 152008 7 17

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
5117 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference19th International Conference on Rewriting Techniques and Applications, RTA 2008
国/地域Austria
CityHagenberg
Period08/7/1508/7/17

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Encoding the pure lambda calculus into hierarchical graph rewriting」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル