End-to-end neural speaker diarization with permutation-free objectives

Yusuke Fujita, Naoyuki Kanda, Shota Horiguchi, Kenji Nagamatsu, Shinji Watanabe

研究成果: Conference article査読

79 被引用数 (Scopus)

抄録

In this paper, we propose a novel end-to-end neural-network-based speaker diarization method. Unlike most existing methods, our proposed method does not have separate modules for extraction and clustering of speaker representations. Instead, our model has a single neural network that directly outputs speaker diarization results. To realize such a model, we formulate the speaker diarization problem as a multi-label classification problem, and introduces a permutation-free objective function to directly minimize diarization errors without being suffered from the speaker-label permutation problem. Besides its end-to-end simplicity, the proposed method also benefits from being able to explicitly handle overlapping speech during training and inference. Because of the benefit, our model can be easily trained/adapted with real-recorded multi-speaker conversations just by feeding the corresponding multi-speaker segment labels. We evaluated the proposed method on simulated speech mixtures. The proposed method achieved diarization error rate of 12.28%, while a conventional clustering-based system produced diarization error rate of 28.77%. Furthermore, the domain adaptation with real-recorded speech provided 25.6% relative improvement on the CALLHOME dataset.

本文言語English
ページ(範囲)4300-4304
ページ数5
ジャーナルProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
2019-September
DOI
出版ステータスPublished - 2019
外部発表はい
イベント20th Annual Conference of the International Speech Communication Association: Crossroads of Speech and Language, INTERSPEECH 2019 - Graz, Austria
継続期間: 2019 9月 152019 9月 19

ASJC Scopus subject areas

  • 言語および言語学
  • 人間とコンピュータの相互作用
  • 信号処理
  • ソフトウェア
  • モデリングとシミュレーション

フィンガープリント

「End-to-end neural speaker diarization with permutation-free objectives」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル