Energy decay for the wave equation with boundary and localized dissipations in exterior domains

Jeong Ja Bae, Mitsuhiro Nakao

研究成果: Article査読

12 被引用数 (Scopus)

抄録

We study a decay property of solutions for the wave equation with a localized dissipation and a boundary dissipation in an exterior domain Ω with the boundary ∂Ω, = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = Ø. We impose the homogeneous Dirichlet condition on Γ0 and a dissipative Neumann condition on Γ1. Further, we assume that a localized dissipation a(x)ut is effective near infinity and in a neighborhood of a certain part of the boundary Γ0. Under these assumptions we derive an energy decay like E(t) ≤ C(1 + t)-1 and some related estimates.

本文言語English
ページ(範囲)771-783
ページ数13
ジャーナルMathematische Nachrichten
278
7-8
DOI
出版ステータスPublished - 2005
外部発表はい

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「Energy decay for the wave equation with boundary and localized dissipations in exterior domains」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル