抄録
We study a decay property of solutions for the wave equation with a localized dissipation and a boundary dissipation in an exterior domain Ω with the boundary ∂Ω, = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = Ø. We impose the homogeneous Dirichlet condition on Γ0 and a dissipative Neumann condition on Γ1. Further, we assume that a localized dissipation a(x)ut is effective near infinity and in a neighborhood of a certain part of the boundary Γ0. Under these assumptions we derive an energy decay like E(t) ≤ C(1 + t)-1 and some related estimates.
本文言語 | English |
---|---|
ページ(範囲) | 771-783 |
ページ数 | 13 |
ジャーナル | Mathematische Nachrichten |
巻 | 278 |
号 | 7-8 |
DOI | |
出版ステータス | Published - 2005 |
外部発表 | はい |
ASJC Scopus subject areas
- 数学 (全般)