Entropy, weil-petersson translation distance and gromov norm for surface automorphisms

Sadayoshi Kojima*

*この研究の対応する著者

研究成果: Article査読

3 被引用数 (Scopus)

抄録

Thanks to a theorem of Brock on the comparison ofWeil-Petersson translation distances and hyperbolic volumes of mapping tori for pseudo- Anosovs, we prove that the entropy of a surface automorphism in general has linear bounds in terms of a Gromov norm of its mapping torus from below and an inbounded geometry case from above. We also prove that the Weil- Petersson translation distance does the same from both sides in general. The proofs are in fact immediately derived from the theorem of Brock, together with some other strong theorems and small observations.

本文言語English
ページ(範囲)3993-4002
ページ数10
ジャーナルProceedings of the American Mathematical Society
140
11
DOI
出版ステータスPublished - 2012
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Entropy, weil-petersson translation distance and gromov norm for surface automorphisms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル