Envelope Estimation by Tangentially Constrained Spline

Tsubasa Kusano, Kohei Yatabe, Yasuhiro Oikawa

研究成果: Conference contribution

4 被引用数 (Scopus)

抄録

Estimating envelope of a signal has various applications including empirical mode decomposition (EMD) in which the cubic C^2 -spline based envelope estimation is generally used. While such functional approach can easily control smoothness of an estimated envelope, the so-called undershoot problem often occurs that violates the basic requirement of envelope. In this paper, a tangentially constrained spline with tangential points optimization is proposed for avoiding the undershoot problem while maintaining smoothness. It is defined as a quartic C^2 -spline function constrained with first derivatives at tangential points that effectively avoids undershoot. The tangential points optimization method is proposed in combination with this spline to attain optimal smoothness of the estimated envelope.

本文言語English
ホスト出版物のタイトル2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ4374-4378
ページ数5
ISBN(印刷版)9781538646588
DOI
出版ステータスPublished - 2018 9月 10
イベント2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada
継続期間: 2018 4月 152018 4月 20

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2018-April
ISSN(印刷版)1520-6149

Other

Other2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
国/地域Canada
CityCalgary
Period18/4/1518/4/20

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Envelope Estimation by Tangentially Constrained Spline」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル