Epigenetic switching by the metabolism-sensing factors in the generation of orexin neurons from mouse embryonic stem cells

Koji Hayakawa, Mitsuko Hirosawa, Yasuyuki Tabei, Daisuke Arai, Satoshi Tanaka, Noboru Murakami, Shintaro Yagi, Kunio Shiota*

*この研究の対応する著者

研究成果: Article査読

54 被引用数 (Scopus)

抄録

The orexin system plays a central role in the integration of sleep/wake and feeding behaviors in a broad spectrum of neural-metabolic physiology. Orexin-A and orexin-B are produced by the cleavage of prepro-orexin, which is encoded on the Hcrt gene. To date, methods for generating other peptide neurons could not induce orexin neurons from pluripotent stem cells. Considering that the metabolic status affects orexin expression, we supplemented the culture medium with a nutrient factor, ManNAc, and succeeded in generating functional orexin neurons from mouse ES cells. Because DNA methylation inhibitors and histone deacetylase inhibitors could induce Hcrt expression in mouse ES cells, the epigenetic mechanism may be involved in this orexin neurogenesis. DNA methylation analysis showed the presence of a tissue-dependent differentially methylated region (T-DMR) around the transcription start site of the Hcrt gene. In the orexin neurons induced by supplementation of ManNAc, the T-DMR of the Hcrt gene was hypomethylated in association with higher H3/H4 acetylation. Concomitantly, the histone acetyltransferases p300, CREB-binding protein (CBP), and Mgea5 (also called O-GlcNAcase) were localized to the T-DMR in the orexin neurons. In non-orexin-expressing cells, H3/H4 hypoacetylation and hyper-O-GlcNAc modification were observed at the T-DMRs occupied by O-GlcNAc transferase and Sirt1. Therefore, the results of the present study suggest that the glucose metabolite, ManNAc, induces switching from the inactive state by Ogt-Sirt1 to the active state by Mgea5, p300, and CBP at the Hcrt gene locus.

本文言語English
ページ(範囲)17099-17110
ページ数12
ジャーナルJournal of Biological Chemistry
288
24
DOI
出版ステータスPublished - 2013 6 14
外部発表はい

ASJC Scopus subject areas

  • 生化学
  • 分子生物学
  • 細胞生物学

フィンガープリント

「Epigenetic switching by the metabolism-sensing factors in the generation of orexin neurons from mouse embryonic stem cells」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル