ePTFE reinforced, sulfonated aromatic polymer membranes enable durable, high-temperature operable PEMFCs

Zhi Long, Kenji Miyatake*

*この研究の対応する著者

研究成果: Article査読

6 被引用数 (Scopus)

抄録

Sulfonated polyphenylene (SPP)-based ionomers have been developed for electrochemical applications in recent years due to their inherent thermal and chemical stability. However, the difficult synthesis, limited solubility, and rigid backbone obstructs their progress. Herein, a new monomer, 3,3″-dichloro-2′,3′,5′,6′-tetrafluoro-1,1':4′,1″-terphenyl (TP-f) with high polymerization reactivity was designed and polymerized with sulfonated phenylene monomer to prepare SPP-based ionomers (SPP-TP-f) with high ion exchange capacity up to 4.5 mequiv g−1. The resulting flexible membranes were more proton conductive than Nafion (state-of-the-art proton exchange membrane) even at 120°C and 20% RH. Unlike typical SPP ionomers, SPP-TP-f 5.1 was soluble in ethanol and thus, could be reinforced with double expanded polytetrafluorethylene thin layers to obtain SPP-TP-f 5.1/DPTFE membrane. SPP-TP-f 5.1/DPTFE showed superior fuel cell performance to that of Nafion, in particular, at low humidity (30% RH, > 100°C) and reasonable durability under the severe accelerated conditions combining OCV hold and humidity cycling tests.

本文言語English
論文番号102962
ジャーナルiScience
24
9
DOI
出版ステータスPublished - 2021 9月 24

ASJC Scopus subject areas

  • 一般

フィンガープリント

「ePTFE reinforced, sulfonated aromatic polymer membranes enable durable, high-temperature operable PEMFCs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル